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Abstract. Based on a half-filled two-dimensional tight-binding model with nearest-neighbour and next
nearest-neighbour hopping the effect of imperfect Fermi surface nesting on the Peierls instability is studied
at zero temperature. Two dimerization patterns corresponding to a phonon vector (π, π) are considered. It
is found that the Peierls instability will be suppressed with an increase of next nearest-neighbour hopping
which characterizes the nesting deviation. First and second order transitions to a homogeneous state are
possible. The competition between the two dimerized states is discussed.

PACS. 71.45.Lr Charge-density-wave systems – 63.20.Kr Phonon-electron and phonon-phonon
interactions

1 Introduction

The low dimensional electronic materials are known to be
very susceptible to a Peierls instability towards a charge
density wave (CDW) state driven by the electron-phonon
interaction [1]. The presence of a lattice distortion is usu-
ally favorable to lower the electronic energy and once this
reduction overcomes the increase of lattice deformation
energy the Peierls transition takes place. It has been exten-
sively studied in a lot of quasi-one-dimensional (1D) mate-
rials such as organic conjugated polymers (CH)x [2] or in-
organic blue bronzes A0.3MoO3 (A = K, Rb, Tl) [3], as well
as quasi-two-dimensional (2D) materials such as purple
bronzes AMo6O17 (A = Na, K, Tl) [3–5] and monophos-
phate tungsten bronzes (PO2)4(WO3)2m (4 ≤ m ≤
14) [6,7].

It is believed that for the Peierls transition the struc-
ture of the Fermi surface (FS) plays an essential role. In
ideal 1D systems, the FS, being composed of two points
separated by 2kF (Fermi wave vector), is always per-
fectly nested. The lattice distortion opens a gap at the
Fermi level with the consequence that the energy gain
from the electronic energy is always dominant, so that
the Peierls instability with a metal-insulator transition al-
ways takes place (if quantum effects of phonons are not
considered [8]).

The situation becomes richer in two dimensions be-
cause of a more complex FS structure. In general, the FS is
not nested, i.e., a single mode of lattice distortion can con-
nect only two points in the FS, and the gain of electronic
energy from this distortion is not enough to overcome the
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Fig. 1. The Fermi surfaces for the 2D tight-binding model
without dimerization at half-filling. The solid line has t′ = 0,
the dashed line has t′ = 0.1, and the dotted line has t′ = 0.2.

increase of lattice energy. However, in some special cases
the FS is still nested and the electronic energy may be low-
ered substantially by the lattice distortion even if a gap
may be not fully opened at the FS as in one dimension.
The simplest realization is the 2D square lattice tight-
binding model with only nearest-neighbour (n.n.) hopping
at half-filling, i.e., the 2D version of the well-known Su-
Schrieffer-Heeger (SSH) model [9]. In this case the FS con-
sists of parallel straight lines: |kx|+ |ky| = π as illustrated
in Figure 1 by the solid line. One of the Fermi lines may
be completely moved to another by a translational vector
Q = (π, π), i.e., the FS is perfectly nested with nesting
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Fig. 2. The lattice distortion patterns (a) and (b). In the figure
a thick solid line corresponds to a strong bond with hopping
integral t(1+δ), a dashed line corresponds to a weak bond with
hopping integral t(1−δ), and a thin solid line corresponds to a
normal bond with hopping integral t. Both patterns correspond
to phonons with wave vector (π, π). The dimerization is along
two axes for case (a), while only along x axis for case (b).

vector Q. The Peierls instability for this model was theo-
retically studied one decade ago in connection to high Tc

superconductors [10,11]. Unlike in one dimension, there
are several possible alternation patterns for the lattice dis-
tortion and the corresponding bond hopping, as discussed
by Tang and Hirsch [10]. In Figure 2 two possible dimer-
ization patterns are shown. Both of them correspond to
phonons with wave vector (π, π), which is exactly Q so
that the reduced Brillouin zone boundary after distortion
perfectly meets the original FS. The difference between
them is that for case (a) the dimerization is in both di-
rections, while it is only in one direction for case (b). It
was found that even arbitrarily small electron-lattice cou-
pling strength will induce a lattice distortion into case
(a) or (b), i.e., the Peierls instability is sure to occur
even for this 2D model [10,11]. On the other hand, how-
ever, it may be noticed that the present perfect nesting
of the FS may be easily broken, for example, by intro-
ducing next nearest-neighbour (n.n.n.) hopping which is
often not negligible. Then the following problem naturally
arises: does the above Peierls instability still survive the
imperfect nesting of the FS?

Actually, for those quasi-2D materials which show a
Peierls instability perfect nesting of their Fermi surfaces
is never present, but an approximate, so called hidden
nesting exists [12]. Also, it may be reasonable to expect
that the Peierls instability will be suppressed if the FS is
so far away from nesting that even no hidden nesting is
present. As far as real materials are concerned the shapes
of the Fermi surfaces are obtained by band structure cal-
culations and may be often rather complicated. Neverthe-
less, the tight-binding model with the n.n. and n.n.n. hop-
ping should already be sufficient to simulate an essential
property of real Fermi surfaces: whether they are nesting
or not. Thus it is necessary to clarify how sensitive the
Peierls instability is to the deviations of the FS from per-
fect nesting which is controlled by n.n.n. hopping. This is
the topic addressed in this paper. A similar problem was
studied previously by Lin et al. [13], however, their study
was only limited to the dimerization pattern (a). (Actu-
ally this pattern is not favorable in a large region of t′ as
will be seen later.) We will include the two possible pat-

terns (a) and (b) and address the unexpected competition
between them.

2 FS nesting and Peierls instability

We begin with the following Hamiltonian based on a
square lattice with a half-filled band:

H = −t
∑
i,j,σ

[1 + α(uxi,j − uxi+1,j)](c
†
i,j,σci+1,j,σ + h.c.)

−t
∑
i,j,σ

[1 + α(uyi,j − u
y
i,j+1)](c†i,j,σci,j+1,σ + h.c.)

−t′
∑
i,j,σ

(c†i,j,σci+1,j+1,σ + c†i,j,σci+1,j−1,σ + h.c.)

+
K

2

∑
i,j

[(uxi,j − uxi+1,j)
2 + (uyi,j − u

y
i,j+1)2], (1)

where c†i,j,σ(ci,j,σ) denotes the creation (annihilation) op-
erator for an electron at site (i, j) with spin σ (i denotes
x coordinate and j denotes y coordinate), ux/yi,j represents
the displacement component of site (i, j) in x/y direc-
tion, t, t′ are n.n and n.n.n. hopping parameters and α is
the electron-lattice coupling constant. The last term above
describes the lattice elastic potential energy with K the
elastic constant. The lattice kinetic energy is omitted here
since we do not study the dynamic behavior of phonons.
For the lattice distortion patterns investigated here, the
distance between n.n.n. sites remains unchanged, therefore
no dimerization of t′ is considered in Hamiltonian (1).

The lattice distortion, as shown in Figure 2 having the
wave vector Q, may be explicitly introduced as

uxi,j − uxi+1,j = (−1)i+ju, uyi,j − u
y
i,j+1 = (−1)i+ju

for case (a), and

uxi,j − uxi+1,j = (−1)i+ju, uyi,j − u
y
i,j+1 = 0

for case (b), where u is the amplitude of dimerization
determined by minimization of the ground state energy.
For convenience, two dimensionless parameters are defined
as follows: the dimerization amplitude δ = αu and the
electron-lattice coupling constant η = α2t/K. The n.n.
hopping integral t is taken as the energy unit.

Before proceeding, we would like to mention that two
further possible lattice distortion patterns as discussed in
previous works on the 2D Peierls instability, which cor-
respond to wave vector (π, 0) and/or (0, π) [10], are ex-
cluded in our study. We omit them because at t′ = 0
their energy gains are much smaller than those for the
patterns considered here [10]. (They are possibly favorable
only when a large Hubbard U term is switched on [10].)
This is physically understandable: they have a different
wave vector from the nesting one. Very recently, a more
complex lattice distortion pattern with incommensurate
structure was studied by Ono and Hamano in the case of
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Fig. 3. The optimal value δ∗ as a function of η for t′ = 0. The
dashed line is for case (a) and the solid line is for case (b).

t′ = 0 [14]. However it will not be included here since it
is not unique [14]. The patterns considered in Figure 2
may be regarded as typical structures for the study of the
Peierls instability in two dimensions. In the following the
Peierls instabilities for t′ = 0 and t′ 6= 0 are discussed
respectively.

2.1 t’ = 0

For completeness, we first reproduce the results for the
perfect nesting case t′ = 0, which are straightforward but
helpful. In momentum space the electronic spectra for case
(a) and (b) are respectively written as

ε±k,a = ±2
√

(cos kx + cos ky)2 + δ2(sin kx + sin ky)2 ,

ε±k,b = ±2
√

(cos kx + cos ky)2 + δ2 sin2 kx . (2)

In the ground state only the lower band is fully occupied
for each case (i.e., the chemical potential is zero). Then
the ground state energy is given by

E = 2
∑
k

ε−k,a +Nδ2/η

for case (a), and

E = 2
∑
k

ε−k,b +Nδ2/2η

for case (b), where the summation is over the wave vec-
tor k = (kx, ky) in the Brillouin zone −π < kx ± ky ≤ π
and N is the total number of lattice sites. The factor 2
in front of the summation is due to spin degeneracy.
Obviously the increase of elastic energy for case (a) is
twice of that for case (b) under the same dimerization δ.
For case (a) the energy has explicit analytic expression:
E/N = − 16

π2 E(
√

1− δ2) + δ2/η, where E is the complete
elliptic integral of the second kind.

The results are shown in Figures 3 and 4. In Figure 3
the optimal dimerization parameter δ∗ with lowest energy
vs. the electron-lattice coupling η is plotted, and Figure 4
gives the corresponding ground state energies E∗ at these

Fig. 4. The energy gain of the dimerized state: E∗ at δ = δ∗

minus E0 at δ = 0 as a function of η, corresponding to Figure 3.

δ∗ values (with respect to the energy of the undimerized
lattice E0 which is equal to −16/π2 times N). From these
figures it can be seen that the Peierls instability takes
place as long as the electron-lattice coupling is non-zero
for either case (a) or (b). Although the magnitude of δ∗
is small when η → 0, it is proven to be finite, with an ex-
ponential dependence of exp(−c/η) on η (c is a constant).
This confirms the related statement made in the Introduc-
tion. Moreover, it is seen from Figure 4 that the energy
E∗ for case (b) (solid line) is always lower than the corre-
sponding one for case (a) (dashed line) in the full region
of finite η, which means that the case (b) is the more fa-
vorable dimerization pattern for t′ = 0. Unfortunately in
their works, Mazumdar as well as Tang and Hirsch in-
correctly preferred case (a), see reference [11]. A similar
conclusion as ours was reached by Ono and Hamano [14].

2.2 t′ 6= 0

For t′ 6= 0 the perfect nesting of the FS is broken. In
Figure 1 the Fermi surfaces for the undimerized lattice are
plotted for several t′ values. One may see that the bigger
t′ is the farther the FS deviates from perfect nesting.

Still the Hamiltonian can be easily diagonalized, but
the final results are quite nontrivial. Now the electronic
spectra become

ε±k,a = −4t′ cos kx cos ky

±2
√

(cos kx + cos ky)2 + δ2(sin kx + sinky)2 ,

ε±k,b = −4t′ cos kx cos ky

±2
√

(cos kx + cos ky)2 + δ2 sin2 kx , (3)

and the ground state energy is

E = 2
∑

ε±k,a≤µa

ε±k,a +Nδ2/η

for case (a), and

E = 2
∑

ε±
k,b≤µb

ε±k,b +Nδ2/2η
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Fig. 5. The optimal value δ∗ as a function of t′ for η = 0.5.
The dashed line is for case (a) and the solid line is for case (b).

for case (b), where µa and µb are chemical potentials for
case (a) and (b), respectively. By solving the equation
∂E/∂δ = 0 we may single out the optimal value δ∗ for each
t′ with fixed η. In the following a typical value η = 0.5 is
adopted [13,14].

The results for δ∗ are shown in Figure 5. It is clearly
seen that δ∗ goes to zero with increase of t′ in both
cases, which means that the Peierls instability is sup-
pressed at some t′, as expected. And more interestingly,
the details for both cases are different. For case (a) δ∗
first decreases weakly with increase of t′, but at some crit-
ical t′c,1 ' 0.1733, it drops suddenly to zero, showing a
first-order transition. On the other hand, for case (b) δ∗
first retains its t′ = 0 value, and after t′ is beyond about
0.12 it begins to decrease gradually and approaches zero
smoothly at t′c,2 ' 0.1704 – the transition is of second-
order. The value t′c,2 is close to, but different from t′c,1.

To see the above transitions more clearly, we plot in
Figures 6 and 7 the dependence of the ground state energy
on the dimerization parameter δ for several different t′
values for case (a) and (b), respectively. For case (a) it
is seen that when t′ approaches the critical value t′c,1, the
energy E first increases with δ and then decreases towards
a minimum, as shown in the inset of Figure 6. Thus this
minimum may be only a local one. It is expected that at
t′c,1 the energy E at such a minimum is the same as that
at δ = 0, see the inset. And then once t′ is beyond t′c,1
the δ value with absolutely lowest energy should be taken
zero, i.e., δ∗ = 0. So a first-order transition arises. On the
other hand, for case (b) the energy E always decreases
first with increase of δ until a minimum is reached. So this
minimum is actually a global one. It shifts continuously
towards zero with increase of t′, which explains the second-
order transition.

It deserves to point out the physical reason for the
constant value of δ∗ in the small t′ region (about t′ < 0.12)
for case (b). Actually, in this region the two energy bands
ε±k,b do not overlap when one takes relatively large δ value
like δ∗, so that the lower band ε−k,b is fully occupied and
the upper band ε+

k,b is empty in the ground state. Then
the electronic energy is simply given by

∑
k ε
−
k,b, which is

independent of t′ due to
∑

k cos kx cos ky = 0. Therefore
the ground state energy for t′ 6= 0 is the same as that

Fig. 6. The ground state energy per site as a function of δ for
several t′ values for case (a). The solid curves from up to down
correspond to t′ = 0.164, 0.168, 0.172, 0.1733, respectively,
and the dotted line connects the global minima of them. The
curves for t′ = 0.172 and t′ = 0.1733 are enlarged in the inset,
where the initial increase in each curve is shown.

Fig. 7. The same as Figure 6 for case (b). The curves from up
to down correspond to t′ = 0.14, 0.15, 0.16, 0.17, respectively.
In the inset the curve for t′ = 0.17 is shown in the small δ
region.

for t′ = 0, so is the solution δ∗. For more clearness, the
electronic spectra for case (b) are plotted in Figure 8 for
two different t′ values, where the two bands are only found
to touch for t′ = 0.1. We also point out that for case
(a) the two bands always overlap for all t′ (not shown)
because they are identical in the Brillouin zone boundary:
kx − ky = ±π.

While so far the results of the Peierls instabilities for
the two patterns have been given separately, it is now
natural to think of the competition between them. The
competition becomes evident when the respective lowest
energies E∗ at different t′ values are compared, as shown
in Figure 9. It is interesting to see that the energy E∗ for
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Fig. 8. The electronic spectra for case (b). The solid and dot-
ted curves represent energy bands ‘−’ and ‘+’, respectively,
and the dashed horizontal line shows the chemical potential.
For t′ = 0.1, δ∗ = 0.2422, µb = 0.4, the two bands display no
overlap; while for t′ = 0.15, δ∗ = 0.19, µb = 0.4556, the two
bands are overlapped.

Fig. 9. The energy at δ = δ∗ as a function of t′ for η = 0.5,
corresponding to Figure 5. Both curves stop at their respective
critical points.

case (b) is first less than that for case (a), but later be-
comes larger with increase of t′. Consequently, a transition
between these two dimerization patterns is predicted. To
summarize, the evolution of the stable state for the system
with increase of t′ may be described as follows: at t′ = 0
the dimerized state stabilizes due to the perfect FS nest-
ing, and moreover the dimerization pattern takes form (b).
This state remains stable until at some t′ value (which is
about 0.137 for η = 0.5) it is replaced by the other dimer-
ized state (a). Finally, the dimerized state breaks down,
i.e., the Peierls instability is suppressed at some critical
value t′c which is equal to t′c,1 as can be seen in Figure 9.
Thus the suppression is a first-order transition.

Above, only the results for t′ > 0 are presented. Taking
t′ → −t′ will reflect all the results as shown by Figures 5
and 9 about t′ = 0. This is because of particle-hole sym-
metry at half-filling, that is, the Hamiltonian with −t′

Fig. 10. The same as Figure 5 but with η = 0.3.

Fig. 11. The same as Figure 9 but with η = 0.3.

may be related to that with t′ through the particle-hole
transformation: ci,j,σ → (−1)i+jc†i,j,σ.

Up to now all results have been shown for fixed η.
In the last part of this section we will look at the role
of η. Since the parameter η only appears in the elastic
energy, i.e., it is irrelevant to the electronic part of the
ground state energy, the qualitative properties of curves
E vs. δ as shown in Figures 6 and 7 are expected to be
retained, so are the above qualitative results for the Peierls
instability. Quantitatively one may think, the smaller the
electron-lattice coupling η is (or equivalently the larger
the elastic strength K is), the smaller the critical value
t′c for the suppression of the Peierls instability should be.
As a check, the case for η = 0.3 is calculated. The results
are shown in Figures 10 and 11, which are consistent with
the above predictions. Also note that the critical value t′c
drops fast with decreasing η.

3 Discussion

In the previous section the Peierls instability for two
dimerization patterns has been carefully studied in its
dependence on t′. The results are instructive. It is now
known that low-dimensional metals show two types of elec-
tronic instabilities: either a Peierls instability or a super-
conducting one. The Peierls instability may prevent some
metals from entering a superconducting state. For exam-
ple, in the transition metal bronzes, the Peierls instabil-
ity is the dominant mechanism and superconductivity was
seldom found [6]. Our results suggest that the Peierls in-
stability may be suppressed by some way of increasing
imperfect nesting, for example, by applying pressure to
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enhance the n.n.n. hopping. Moreover, the possible tran-
sition between different dimerized states is reminiscent
of the experimental results in monophosphate tungsten
bronzes like P4W12O44, where double Peierls transitions
occur with change of temperature [6,7]. The competition
between two dimerization patterns at finite temperatures
is believed to be interesting and will be left for future
investigation.

A further problem is the consideration of effects of
electron correlations, e.g., the Hubbard U term which
are not included in this work. For t′ = 0 the problem
has been studied by Tang and Hirsch by numerical cal-
culations [10,11]. It was found that the on-site Coulomb
interaction weakens the dimerization in two dimensions
as soon as U is present [11]. The possible explanation is
that the U term favors the appearance of antiferromag-
netic (AF) spin order in 2D half-filled Hubbard model,
while the dimerization stabilizes local spin singlets which
are unfavorable for strong U . Above, we showed that t′
also suppresses dimerization. Does this indicate that the
simultaneous presence of both U and t′ will speed the sup-
pression of the dimerization? We leave this issue for future
work and only give some clues here from previous analysis
in the large U limit (for the moment the concrete dimer-
ization pattern is not considered). In this limit we are
facing a problem of localized electrons interacting via an
effective n.n. exchange J (∼ t2/U) and n.n.n. exchange
J ′ (∼ t

′2/U). The Peierls system then transforms into
the corresponding spin-Peierls (SP) system. The 2D (or
quasi-1D) spin-Peierls instability without n.n.n. exchange
J ′ was studied by some authors [15–17]. It was found that
the SP transition does not spontaneously occur unless the
so called spin-lattice coupling (analogous to η here) ex-
ceeds a threshold. On the other hand, it was known that
the n.n.n. exchange J ′ will frustrate the AF order for the
2D spin system. So one may assume that the additional
inclusion of J ′ will be favorable to the formation of a SP
state. Thus it is not unreasonable to believe that the ef-
fects of t′ and U on the Peierls instability may cancel in
part when acting simultaneously, although each of them
separately tends to suppress it.

4 Conclusion

In conclusion, a 2D tight-binding model with n.n. hopping
t and n.n.n. hopping t′ is used to study the effect of
imperfect FS nesting on the Peierls instability of the
ground state. Two possible dimerization patterns corre-
sponding to a phonon vector (π, π) are considered as case
(a) and (b). It is found that the Peierls instability will be

suppressed with an increase of t′ which characterizes the
deviation from perfect nesting. The details for the two
cases are different: for case (a) the suppression is a first-
order transition while for case (b) it is of second-order.
Also a transition between the two dimerized states is in-
vestigated.
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